2,545 research outputs found

    Brief of Law Professors as Amicus Curiae in Support of Respondent

    Get PDF
    Inventors lacking assurance of a market, or even the right to practice patented inventions, face considerable risk. Those who qualify for patents, in return for disclosure, receive only the assistance of the courts in excluding others from economic exploitation of their inventions. Already subject to many legislative and judicial limitations, patents should not be further subject to the functional equivalent of private inverse condemnation without congressional action

    Gas flow in near surface comet like porous structures: Application to 67P/Churyumov-Gerasimenko

    Get PDF
    We performed an investigation of a comet like porous surface to study how sub-surface sublimation with subsequent flow through the porous medium can lead to higher gas temperatures at the surface. A higher gas temperature of the emitted gas at the surface layer, compared to the sublimation temperature, will lead to higher gas speeds as the gas expands into the vacuum thus altering the flow properties on larger scales (kilometres away from the surface). Unlike previous models that have used modelled artificial structures, we used Earth rock samples with a porosity in the range 24 – 92 % obtained from X-ray micro computed tomography (micro-CT) scans with resolution of some ÎŒm. Micro-CT scanning technology provides 3D images of the pore samples. The direct simulation Monte Carlo (DSMC) method for the rarefied gas dynamics is directly applied on the digital rock samples in an unstructured mesh to determine the gas densities, temperatures and speeds within the porous medium and a few centimetres above the surface. The thicknesses of the rock samples were comparable to the diurnal thermal skin depth (5cm). H2O was assumed to be the outgassing species. We correlated the coma temperatures and other properties of the flow with the rock porosities. The results are discussed as an input to analysis of data from the Microwave Instrument on Rosetta Orbiter (MIRO) on the 67P/Churyumov-Gerasimenko

    The properties of asteroid (2867) Steins from Spitzer observations and OSIRIS shape reconstruction

    Full text link
    We report on the thermal properties and composition of asteroid (2867) Steins derived from an analysis of new Spitzer Space Telescope (SST) observations performed in March 2008, in addition to previously published SST observations performed in November 2005. We consider the three-dimensional shape model and photometric properties derived from OSIRIS images obtained during the flyby of the Rosetta spacecraft in September 2008, which we combine with a thermal model to properly interpret the observed SST thermal light curve and spectral energy distributions. We obtain a thermal inertia in the range 100\pm50 JK-1m-2s-1/2 and a beaming factor (roughness) in the range 0.7-1.0. We confirm that the infrared emissivity of Steins is consistent with an enstatite composition. The November 2005 SST thermal light curve is most reliably interpreted by assuming inhomogeneities in the thermal properties of the surface, with two different regions of slightly different roughness, as observed on other small bodies, such as the nucleus of comet 9P/Tempel 1. Our results emphasize that the shape model is important to an accurate determination of the thermal inertia and roughness. Finally, we present temperature maps of Steins, as seen by Rosetta during its flyby, and discuss the interpretation of the observations performed by the VIRTIS and MIRO instruments

    Energy in the home: Everyday life and the effect on time of use

    Get PDF
    The application of building simulation and modelling is becoming more widespread, particularly in the analysis of residential buildings. The energy consumption and control of systems in residential buildings are tightly linked to the behaviour of people, arguably more so than in commercial buildings which have traditionally been the preserve of building simulation analysis. The input profiles used in simulation pay little attention to the link between numerical characterisations of observed ‘behaviour’ and the way people actually live in the home. Understanding this is important if we are to improve the modelling of buildings, gain greater insight into energy consumption and make better decisions about future energy production and generation. This paper explores this link by combining conventional numerical analysis of appliance data with insights from the ethnographic study of families in 20 UK homes. Ethnographic insights provide a context to the analysis and understanding of monitoring data that would not otherwise be possible. Importantly, this paper highlights the need to rethink previously static notions of simulation input, such as occupancy and individual appliance use

    Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch

    Full text link
    [EN] The present study describes the preparation and characterization of binary and ternary blends based on polylactide (PLA) with poly("-caprolactone) (PCL) and thermoplastic starch (TPS) to develop fully compostable plastics with improved ductility and toughness. To this end, PLA was first melt-mixed in a co rotating twin-screw extruder with up to 40 wt % of different PCL and TPS combinations and then shaped into pieces by injection molding. The mechanical, thermal, and thermomechanical properties of the resultant binary and ternary blend pieces were analyzed and related to their composition. Although the biopolymer blends were immiscible, the addition of both PCL and TPS remarkably increased the flexibility and impact strength of PLA while it slightly reduced its mechanical strength. The most balanced mechanical performance was achieved for the ternary blend pieces that combined high PCL contents with low amounts of TPS, suggesting a main phase change from PLA/TPS (comparatively rigid) to PLA/PCL (comparatively flexible). The PLA-based blends presented an Âżisland-and-seaÂż morphology in which the TPS phase contributed to the fine dispersion of PCL as micro-sized spherical domains that acted as a rubber-like phase with the capacity to improve toughness. In addition, the here-prepared ternary blend pieces presented slightly higher thermal stability and lower thermomechanical stiffness than the neat PLA pieces. Finally, all biopolymer pieces fully disintegrated in a controlled compost soil after 28 days. Therefore, the inherently low ductility and toughness of PLA can be successfully improved by melt blending with PCL and TPS, resulting in compostable plastic materials with a great potential in, for instance, rigid packaging applications.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R, and by the EU H2020 project YPACK (reference number 773872).Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch. Materials. 11(11):1-20. https://doi.org/10.3390/ma11112138S1201111Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126. doi:10.1098/rstb.2008.0311Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Kumar, N., & Das, D. (2017). Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B: Engineering, 130, 54-63. doi:10.1016/j.compositesb.2017.07.059GarcĂ©s, J. M., Moll, D. J., Bicerano, J., Fibiger, R., & McLeod, D. G. (2000). Polymeric Nanocomposites for Automotive Applications. Advanced Materials, 12(23), 1835-1839. doi:10.1002/1521-4095(200012)12:233.0.co;2-tLasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Muller, J., GonzĂĄlez-MartĂ­nez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952Kakroodi, A. R., Kazemi, Y., Nofar, M., & Park, C. B. (2017). Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 308, 772-782. doi:10.1016/j.cej.2016.09.130Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., & Shie, M.-Y. (2015). Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 56, 165-173. doi:10.1016/j.msec.2015.06.028Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 9(4), 4015-4023. doi:10.1021/acsami.6b11793Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Mooney, D. J., Breuer, C., McNamara, K., Vacanti, J. P., & Langer, R. (1995). Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1(2), 107-118. doi:10.1089/ten.1995.1.107Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. doi:10.1016/j.rser.2017.05.143Pluta, M., & Piorkowska, E. (2015). Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 46, 79-87. doi:10.1016/j.polymertesting.2015.06.014Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). PolĂ­meros, 25(6), 581-590. doi:10.1590/0104-1428.1986Ljungberg, N., & WesslĂ©n, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Darie-Niƣă, R. N., Vasile, C., Irimia, A., LipƟa, R., & RĂąpă, M. (2015). Evaluation of some eco-friendly plasticizers for PLA films processing. Journal of Applied Polymer Science, 133(13), n/a-n/a. doi:10.1002/app.43223Quiles-Carrillo, L., Blanes-MartĂ­nez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. doi:10.1016/j.eurpolymj.2012.03.015Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002Gug, J.-I., Tan, B., Soule, J., Downie, M., Barrington, J., & Sobkowicz, M. J. (2017). Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends. International Polymer Processing, 32(3), 363-377. doi:10.3139/217.3351Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Wu, N., & Zhang, H. (2017). Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Materials Letters, 192, 17-20. doi:10.1016/j.matlet.2017.01.063Sarazin, P., Li, G., Orts, W. J., & Favis, B. D. (2008). Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 49(2), 599-609. doi:10.1016/j.polymer.2007.11.029Valerio, O., Misra, M., & Mohanty, A. K. (2018). Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polymer Testing, 65, 420-428. doi:10.1016/j.polymertesting.2017.12.018Ostafinska, A., FortelnĂœ, I., Hodan, J., KrejčíkovĂĄ, S., NevoralovĂĄ, M., KredatusovĂĄ, J., 
 Ć louf, M. (2017). Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the Mechanical Behavior of Biomedical Materials, 69, 229-241. doi:10.1016/j.jmbbm.2017.01.015Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., 
 Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends. Macromolecules, 44(6), 1513-1522. doi:10.1021/ma1026934Wokadala, O. C., Ray, S. S., Bandyopadhyay, J., Wesley-Smith, J., & Emmambux, N. M. (2015). Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity. Polymer, 71, 82-92. doi:10.1016/j.polymer.2015.06.058Zolali, A. M., & Favis, B. D. (2017). Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement. Soft Matter, 13(15), 2844-2856. doi:10.1039/c6sm02386jMatzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polymer Degradation and Stability, 77(1), 17-24. doi:10.1016/s0141-3910(02)00072-1Maglio, G., Malinconico, M., Migliozzi, A., & Groeninckx, G. (2004). Immiscible Poly(L-lactide)/Poly(ɛ-caprolactone) Blends: Influence of the Addition of a Poly(L-lactide)-Poly(oxyethylene) Block Copolymer on Thermal Behavior and Morphology. Macromolecular Chemistry and Physics, 205(7), 946-950. doi:10.1002/macp.200300150Forssell, P., MikkilĂ€, J., Suortti, T., SeppĂ€lĂ€, J., & Poutanen, K. (1996). Plasticization of Barley Starch with Glycerol and Water. Journal of Macromolecular Science, Part A, 33(5), 703-715. doi:10.1080/10601329608010888Raquez, J.-M., Nabar, Y., Srinivasan, M., Shin, B.-Y., Narayan, R., & Dubois, P. (2008). Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 74(2), 159-169. doi:10.1016/j.carbpol.2008.01.027Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Odelius, K., Ohlson, M., Höglund, A., & Albertsson, A. (2012). Polyesters with small structural variations improve the mechanical properties of polylactide. Journal of Applied Polymer Science, 127(1), 27-33. doi:10.1002/app.36842Zhen, Z., Ying, S., Hongye, F., Jie, R., & Tianbin, R. (2011). Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Succinate). Polymers from Renewable Resources, 2(2), 49-62. doi:10.1177/204124791100200201Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024Ferri, J. M., Garcia-Garcia, D., SĂĄnchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082GarcĂ­a-Campo, M., Boronat, T., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2017). Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers, 10(1), 3. doi:10.3390/polym10010003Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., GarcĂ­a-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Tang, L., Wang, L., Chen, P., Fu, J., Xiao, P., Ye, N., & Zhang, M. (2017). Toughness of ABS/PBT blends: The relationship between composition, morphology, and fracture behavior. Journal of Applied Polymer Science, 135(13), 46051. doi:10.1002/app.46051Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726Carmona, V. B., CorrĂȘa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2014). Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(Δ-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment, 23(1), 83-89. doi:10.1007/s10924-014-0666-7Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607-620. doi:10.1016/j.colsurfb.2014.11.011Bordes, C., FrĂ©ville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., Briançon, S., & LantĂ©ri, P. (2010). Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. International Journal of Pharmaceutics, 383(1-2), 236-243. doi:10.1016/j.ijpharm.2009.09.023Small, P. A. (2007). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3(2), 71-80. doi:10.1002/jctb.5010030205Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L. (2016). Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 132, 97-108. doi:10.1016/j.polymdegradstab.2016.03.037Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), 111-122. doi:10.1016/j.carbpol.2003.11.015Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156PatrĂ­cio, T., & BĂĄrtolo, P. (2013). Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Engineering, 59, 292-297. doi:10.1016/j.proeng.2013.05.124Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(Δ-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 45, 93-100. doi:10.1016/j.polymertesting.2015.05.007Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-PĂ©rez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(Δ-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Torres-Giner, S., Montanes, N., Fenollar, O., GarcĂ­a-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Martin, O., & AvĂ©rous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Di Franco, C. R., Cyras, V. P., Busalmen, J. P., Ruseckaite, R. A., & VĂĄzquez, A. (2004). Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86(1), 95-103. doi:10.1016/j.polymdegradstab.2004.02.009Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147-157. doi:10.1016/j.polymdegradstab.2007.10.011Thakore, I. ., Desai, S., Sarawade, B. ., & Devi, S. (2001). Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal, 37(1), 151-160. doi:10.1016/s0014-3057(00)00086-0Sikorska, W., Musiol, M., Nowak, B., Pajak, J., Labuzek, S., Kowalczuk, M., & Adamus, G. (2015). Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101, 32-41. doi:10.1016/j.ibiod.2015.03.02

    First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory

    Get PDF
    A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 Ό\muA. The heart of this device is a Fabry-Perot cavity which increased the luminosity for Compton scattering in the interaction region so much that a 1.4% statistical accuracy could be obtained within one hour, with a 3.3% total error

    Flights in my hands : coherence concerns in designing Strip'TIC, a tangible space for air traffic controllers

    Get PDF
    Best Paper Honorable Mention awardInternational audienceWe reflect upon the design of a paper-based tangible interactive space to support air traffic control. We have observed, studied, prototyped and discussed with controllers a new mixed interaction system based on Anoto, video projection, and tracking. Starting from the understanding of the benefits of tangible paper strips, our goal is to study how mixed physical and virtual augmented data can support the controllers' mental work. The context of the activity led us to depart from models that are proposed in tangible interfaces research where coherence is based on how physical objects are representative of virtual objects. We propose a new account of coherence in a mixed interaction system that integrates externalization mechanisms. We found that physical objects play two roles: they act both as representation of mental objects and as tangible artifacts for interacting with augmented features. We observed that virtual objects represent physical ones, and not the reverse, and, being virtual representations of physical objects, should seamlessly converge with the cognitive role of the physical object. Finally, we show how coherence is achieved by providing a seamless interactive space
    • 

    corecore